LA CORDILLERA DE LOS ANDES
PRESENTACION DE LOS PROBLEMAS GEOMORFOLOGICOS

O. DOLLIFUS *

Résumé:

Le soulèvement en voussoir ponto-pliocène a donné aux Andes leur volume montagneux actuel. Il a porté à plus de 4000 m des surfaces d’érosion élaborées au cours du Tertiaire et, pour la surface dite de la “puna”, principalement au cours du Miocène. Cependant, ces surfaces sont très généralement polygénétiques et polycycliques. Elles sont dominées par de grandes cordillères orientées qui sont le plus souvent des horsts signalant les secteurs de surrection maximale. Certains horsts sont encore actifs comme celui de la Cordillere Blanche au Pérou. Ces surfaces sont déformées tant sur les bordures des bassins intérieurs que sur les flancs de la montagne où elles sont disséquées et réduites à l’état de lanières. Elles ont pu disparaître par suite du recouvrement vers le haut des versants des grandes vallées, notamment aux extrémités de la chaine, la ou les Andes sont plus étroites. En contrebas, des aplatissements se développent au Pliocène et même au Quaternaire ancien dans des secteurs relativement stables: ainsi des glaciers d’érosion tronquent des séries plissées au Pliocène sur l’Altiplano péruvo-bolivien et des surfaces d'abrasion sont retouchées en glaciers sur les bourrelets coteaux péruvo-chiliens.

Il convient de faire la distinction entre les surfaces qui recoupent les séries plissées en roche dure (calcaires, gres, rhyolites, etc.) et dont la durée d’élaboration a été longue, et les glaciers qui recoupent ou retouchent des volumes tendres (pélites, cinéréites, conglomerats), à élaboration rapide.


Profesor de Geografía — 10 Rue Royale — 75008 PARIS.
Les grandes vallées sont, les unes, adaptées aux grandes directions structurales consécutives aux mouvements de la fin du Tertiaire (l'adaptation d'ensemble s'accompagne souvent de nombreuses inadaptations locales), les autres suivent les anciennes directions structurales antérieures au soulevement.

Le Quaternaire se marque par une succession de périodes froides accompagnées de glaciations dans la montagne. On a pu noter trois ou même quatre glaciations distinctes dont l'une au moins remonte au Quaternaire ancien. Les crues glaciaires récentes sont contemporaines des glaciations du Quaternaire moyen et récent d'Europe et d'Amérique du Nord. Ces glaciations sont dues à un climat plus froid et sec aux latitudes moyennes tandis que dans la zone intertropicale elles semblent liées à des précipitations mieux réparties dans l'année, à une nébulosité plus constante accompagnée d'une diminution limitée (de l'ordre de 8 à 9°) des températures moyennes. Des processus péri-glaciaires signalent également l'action du froid quaternaire.

Trois ou quatre nappes détritiques alluviales torrentielles ou parfois lacustres correspondent aux périodes glaciaires, les autres aux "phases d'averses" du domaine désertique et steplique. Des phénomènes azonaux (explosions volcaniques, éboulements liés à des secousses séismiques) interviennent localement avec des terrasses d'origine climatique. Les plus anciennes sont généralement déformées: flexures et plis sur le flanc oriental, failles normales, parallèles ou transversales à la direction des Andes sur le flanc pacifique.

La dynamique des milieux est étudiée. Les mouvements de masse jouent un rôle prépondérant dans les grandes vallées. Ils sont facilités par la trituratiou du matériel rocheux, son altération et les secousses séismiques. La localisation et les aspects des glaciers actuels sont rapidement passés en revue; les limites glaciaires s'étagent de 8000 m dans le domaine tropical aride à quelques centaines de mètres au-dessus du niveau marin à la termination méridionale de la chaîne. L'érosion dans le domaine aride pacifique est actuellement en sommeil. Les quelques averses permettent d'imaginer comment se faisaient les versants plans rocheux au cours des pluviales quaternaires. Aux stades humides de la montagne, l'altération est généralement luisante; les altérations sont souvent déblayées sur les pentes fortes par le ruissellement et les divers glissements et éboulements.

Abstract.

The uplift into a panto-pliocene arc of folding gave to the Andes their present mountainous volume. It has raised to more than 4000 m erosion surfaces elaborated during the Tertiary and, for the surface named "puna" surface, mainly during the Miocene. Yet these surfaces very generally are polygenie and polycyclic. Above them rise great oriented cordilleras, most of the time horsts, signalling districts of maximum upheaval. Some of the horsts still are in activity, as the White Cordillera one in Peru. These surfaces are deformed, on the fringes of the inner basins as well as on the mountain sides where they are dissected and reduced to the state of thin straps. They may have disappeared in consequence of the stepping upwards of the great valleys slopes, especially to the ends of the chain, where the Andes are narrower. Lower down, flattenings develop at the Pliocene and even at the ancient Quaternary in relatively stable areas: thus, erosion glaci cosmic truncate series folded at the Pliocene on the peruvian-bolivian altiplano and abrasion surfaces are retouched into glaci on the peruvian-chilean coastal rims. It is suitable to make a distinction between the surfaces that cross drive the folded series in hard rock (limestone, sandstone, rhyolites, etc.) and which have had a long elaboration period and the glaci which cross drive or retouch the soft volumes (mudstone, vitric tuff, conglomerates) of rapid elaboration.
The great valleys are, the ones adapted to the main structural directions that followed the movements of the end of the Tertiary (the general adaptation is often accompanied by numerous local non-adaptations), the others follow the ancient structural directions antecedent to the uplift.

The Quaternary is marked by a series of cold periods accompanied by glaciations in the mountain. It has been possible to note three or even four separate glaciations, among which one at least goes back to the ancient Quaternary. The recent glacial floods are contemporary to middle and recent Quaternary glaciations in Europe and North-America. Those glaciations are due to a colder and drier climate to the middle latitudes while in the intertropical area they seem to be related with a better distribution of precipitations. over the year, with a more steady unfulness accompanined by a limited decrease of the average temperatures (ranging about 6 to 8°). Periglacial processes also point out the action of the Quaternary cold.

Three or four detrital, alluvial, torrential or sometimes lacustrine sheets correspond, the ones to glacial periods, the others to "phases with rainfalls" of the desert and step domain. "Azonal" phenomena (volcanic explosions, landslides bound to seismic shocks) locally interfere with terraces of climatic origin. The oldest ones are generally deformed; step folds and folds on the eastern side, downcast faults, parallel or transverse to the direction of the Andes on the Pacific side.

The actual dynamics of the environments is studied. Mass movements play a leading part in the great valleys. They are facilitated by the tritation of the rocky material, its alteration and the seismic shocks. The locating and the aspects of the present-day glaciers are briefly surveyed; the glacial limits rise in tiers on 6000 m in the arid tropical domain, at a few hundreds of meters above the marine level at the southern end of the mountain ridge. The erosion in the arid Pacific domain is actually asleep. The few rainfalls permit to imagine how the rocky, even slopes were taking shape during the Quaternary pluvials. At the damp levels of the mountain, the alteration is usually strong; the alterites are often cleared away on the abrupt slopes by the streaming of water and the different glides and landslides.

Resumen.

El alzamiento en bóveda del Ponto-plioceno ha dado a los Andes su volumen montañoso actual y ha llevado a más de 4000 m superficies de erosión elaboradas durante el Terciario. Estas superficies o "puna" son muy probablemente poligénicas y polícíclicas. Están dominadas por grandes cordilleras que son generalmente horsts que delimitan los sectores de sustracción máxima, horsts que son posteriores a la elaboración de la superficie de los mesetas. Esta superficie está deformada tanto sobre los bordes de las cuencas interiores como sobre los flancos de la montaña donde ella ha sido disectada y reducida a bandas. Algunas veces esta superficie ha podido desaparecer debido a su recorte en lo alto de los flancos de los grandes valles, sobretodo en los dos extremos de la cadena. A un nivel inferior, se desarrollaron aplanamientos menores durante el Plioceno y posiblemente durante el Cuaternario antiguo, en sectores que habían permanecido relativamente estables; son los "glacis" de erosión en lazos del altiplano perú-boliviano o las superficies de abrasión recotadas en "glacis" sobre los abombeamientos costeros perú-chilenos.

Algunos grandes valles están adaptados a las grandes direcciones estructurales consecutivas a los movimientos del fin de Terciario (la adaptación del conjunto va acompañada a menudo de numerosas inadaptaciones locales). Otros valles siguen antiguas direcciones estructurales, anteriores al alzamiento andino.

El Cuaternario está marcado por una serie de periodos fríos acompañados de glacaciones en la montaña. Se ha podido determinar la existencia de cuatro glacaciones dis-
tintas de las cuales una al menos remonta al Cretaciópero antiguo. Las glaciaciones recientes son contemporáneas de las glaciaciones del Cretaciópero reciente de Europa y de América del Norte. Sus causas hay que buscarlas, para las latitudes medias, en un clima más frío y seco que el actual. Por el contrario, en la zona intertropical, las glaciaciones parecen ligadas a precipitaciones mejor repartidas, a una nubosidad más constante acompañada de una disminución limitada de la temperatura. Procesos periglaciales señalan igualmente la acción del frío cuaternario.

Tres o cuatro capas detríticas, aluviales, torrenteales o algunas veces lacustres corresponden unas a períodos glaciales, otras a fases copiosamente lluviosas del dominio desertico; fenómenos no zonales (erupciones volcánicas, avalanchas ligadas a sacudidas sísmicas) interfieren localmente en las terrazas de origen climático. Las masas antiguas están generalmente deformadas: flexuras, pliegues o fallas inversas sobre el flanco oriental; fallas normales o transversales a la dirección de los Andes, sobre el flanco occidental.

Se estudia la dinámica actual de las vertientes: los movimientos de masas juegan un papel preponderante en los grandes valladas; ellos son facilitados por la trituración del material rocoso, su meteorización y las sacudidas sísmicas. Se revisan en forma rápida la localización y los aspectos de los glaciares actuales: los límites glaciales se escalonan desde los 6000 m hasta algunas centenas de metros sobre el nivel del mar. La erosión en el dominio árido del Pacífico está actualmente en reposo. Las tormentas de lluvia que caen de tiempo en tiempo permiten imaginar cómo se formaron durante los diluvios cuaternarios las vertientes planas y rocosas dispuestas sobre rellenos deserticos bañados por cursos de agua ocasionales.

Gracias a una disposición de conjunto meridiana, la Cordillera de los Andes presenta el interés de recorrer una gran parte de las zonas climáticas del globo entre el 10° de latitud N y el 56° de latitud S. Los juegos combinados del escalonamiento, de la zonalidad y de la exposición ofrecen toda la gama de los climas, del seco al húmedo, del caliente al frío. Puede seguirse así la acción de los diferentes procesos de erosión que afectan todos los tipos de pendiente y buscar dentro de una perspectiva a la vez diacrónica y sincrónica las consecuencias de las modificaciones climáticas y tectónicas del Cretaciópero sobre los modelos de cada terreno morfológico.

La cadena andina, segmento de 8000 km. de desarrollo de las cordilleras circumpacíficas se compone de varios terrenos morfológicos presentando cada uno su propia serie de problemas. Al Norte del Nudo de Pasto, la cordillera se divide en tres ramales orográficos enlazándose a la América Central y a las Antillas. En Ecuador, la bóveda rota en su parte media, está coronada de grandes volcanes. Los Andes tropicales del Perú y de Bolivia son anchos (250 a 500 km). Las altas superficies planas ocupan un lugar importante a diferencia de las cordilleras colombianas más estrechas y donde la relación entre la superficie de las vertientes y el volumen montañoso es más elevada que en los Andes perú-bolivianos, macizos. Aquí, las mesetas de erosión de la “puna” a veces fosilizadas por las lavas y las altas llanuras de relleno ocupan cerca de la mitad de la superficie de la montaña, donde las alturas son a menudo de más 4000 m; cordilleras cubiertas de hielo y grandes volcanes sobrepasan los 6000 m. Es aquí donde la oposición entre el flanco oriental bien regado y el flanco pacífico desér-
tico, es más neta. Elementos morfológicos de estos tres terrenos pueden reagruparse en una misma unidad fisionómica: así el flanco oriental de los Andes tropicales de Bolivia a Venezuela. Se trata de una inmensa flexura plegando series generalmente esquistosas cortadas de batolitos graníticos, disecadas por profundos valles de vertientes empinadas a menudo tapizadas de bosques. Los Andes chileno-argentinos se presentan en conjunto como un largo relieve disímétrico (Laugénie había incluso de "relieve monocinal"), cuyo frente mira hacia el Pacífico y que se reduce y se estrecha hacia el Sur donde la cadena se une a la guirnalda de las islas Sandwich y a la tierra de Graham.

Un trazo es bastante sorprendente en la escala de la cadena: la rareza de las formas nacidas de la erosión diferencial. Varios factores lo explican: cierta monotonia litológica en grandes conjuntos — un largo batolito forma sobre más de 1500 km. de longitud el flanco occidental de los Andes peruanos — las series esquistosas son potentes en la cadena hercíniana cuyos elementos afloran especialmente en el flanco oriental de los Andes tropicales — en Chile series detríticas y volcánicas aglomeradas en los geosinclinales andinos mesozoicos ofrecen una escasa variedad de facies. La homogeneidad de los volúmenes rocosos frente a los distintos sistemas de erosión está a veces acentuada por la trituración tectónica, especialmente en los dos flancos de la bóveda.

En esta presentación no se trata de considerar en detalle los distintos aspectos de cada terreno morfológico pero conviene evocar los temas generales que conciernen la formación de los volúmenes que ordena la evolución geomorfológica. A pesar de su importancia capital este tema no será evocado aquí sino brevemente ya que su explicación depende de una interpretación geológica y geofísica; el segundo está consagrado al estudio de las superficies culminantes y de sus relaciones con las altas montañas por una parte y por otra con las depresiones, cuencas y grandes valles; el tercero trata de las modificaciones aportadas durante el Cuaternario; el último concierne los procesos y sistemas de erosión que obran actualmente sobre los relieves.

I — LA FORMACION DE LOS VOLUMENES MONTAÑOSOS

Un lugar hasta entonces limitado ha sido reservado al estudio de este tema en la literatura de las ciencias de la tierra consagrada a los Andes tanto por parte de los geólogos como de los geógrafos. Y sin embargo la constitución de un volumen del orden de 5 millones de km3 escalonándose
en una decena de millones de años en un fenómeno de primera magnitud (2).

Dos observaciones deben ser hechas. Se trata más bien de una meseta ondulada que de una superficie regularmente aplanada. En el Sur del Perú como en el Oeste de Bolivia y el Norte de Chile la impresión de lla-
nura está acentuada por espesos recubrimientos heredados de un volca-
nismo fisiológico pliceno que pueden fosilizar una superficie de base desigual. Hechas estas reservas, los Andes, al contrario de los Alpes occidentales, presentan frecuentemente mesetas somitales. Sin embargo, tanto en los An-
des de Mérida, en Venezuela, como en Chile meridional, el relieve de me-
setas ha desaparecido. Se puede notar la altura relativamente igual de las cimas y localmente elementos de aplanamiento. En Venezuela, J. Tricart observa alveolos suspendidos encima de la cavidad reciente y tapizados de alteritas desarrolladas sobre gneis y que serían probablemente herencia-
cias de un clima caliente y húmedo. J. Borde, en la alta montaña chile-
na al Este de Santiago destaca la línea igual de las cimas. La erosión con-
secutiva al gran levantamiento ha desmantelado una superficie, suponiendo
que haya existido realmente.

La cadena se presenta como una o varias bóvedas localmente coro-
nadas de aplanamientos, especialmente en los Andes centrales. No se trata aquí de recordar la evolución paleográfica de los Andes antes de su cons-
titución como cadena liminar en el Mioceno.

Al final del Mioceno los Andes ofrecían ya cierto volumen. Valles bastante profundos fueron rellenados en su parte baja por molascas sin-orogénicas en el Sud-Oeste del Perú (Moquegua inferior). Antes del gran mo-
vimiento en extensión ponto-pliceno (J. Aubouin), pliegues obrando en compresión sobre los bordes orientales dan a la cordillera un cierto relieve, especialmente allí donde las montañas son actualmente las más anchas y las más elevadas (Andes centrales) (3). Sin embargo, es el levantamiento obrando en extensión, sobre todo al Oeste, que, empezando a fines del Mioceno, da a los Andes su dispositivo orográfico actual. Los grandes hun-
dimientos pacíficos al Sur del Ecuador prefiguran el dibujo de la costa
mientras que en los Andes meridionales la onda orográfica se desplaza ha-

---

(2) Esta parte está voluntariamente limitada. Algunos autores, J. Aubouin especialmente, ins-
isten sobre la importancia de la tectónica pliceno. Conviene igualmente mencionar los mo-
delos tectónicos desarrollados a partir de la tectónica de las placas. Varios artículos apa-
tamente que, los Andes son una cadena de colisión nacida del recubrimiento de la placa del Pacífico Sur encabalgada por la placa de América del Sur.

(3) Por Andes centrales se entiende en este artículo los Andes perú-bolivianos.
cia el Este incorporando al levantamiento estructuras transversales anteriores y que las molasas del piedemonte están plisadas y falladas. Es en el Ponto-Plioceno donde se individualizan vigorosamente las tres cordilleras colombianas y el ramo de los Andes de Merida al NE, mientras que las cuencas subsidentes del Magdalena, del Cauca-Patía, del Atrato y del San Juan, así como la del Guayas sirven de fosas de sedimentación. Los movimientos verticales prevalecen sobre la compresión y los desplazamientos tangenciales que resultan de ello, aunque se observen fenómenos de compresión con fallas inversas en los Andes del Norte de la Argentina y que el flanco chileno del Norte Chico se presenta como una gran escalera cuyos peldaños están delimitados por fallas inversas. Los movimientos verticales se traducen según el estilo del levantamiento, su rapidez y la naturaleza del material rocoso, por fallas o flexuras de mediano radio de curvatura delimitando vastos paneles. La intensidad de la fracturación al determinar una mesofissuración abierta parece haber favorecido por partes torcimiento por flexura más que la formación de taludes de falla netos. La datación precisa de las grandes fases del levantamiento es aún insegura para varios sectores. En los Andes centrales, donde las montañas son anchas (de 300 a 450 km.) y macizas (superficies por encima de 4000 m.), la formación del volumen andino remonta al Mioceno. En las extremidades de la cadena, tanto en los Andes venezolanos como en la Patagonia andina, probablemente los movimientos del final del Terciario y del Cuaternario son los decisivos. Correlativamente al bombeo, molasas procedentes del ataque de los relieves se depositan en los bordes. La bóveda mediana se hunde en el curso o a fines de la orogenesis, acarreando la formación de fosas y de cuencas internas: la del Chama en los Andes venezolanos y toda la familia de las depresiones del corredor andino o de los Andes centrales, de las cuencas de Huancayo y de Ayacucho al Altiplano peru-boliviano. Esas fosas y hondonadas repasan depósitos que son útiles para el conocimiento de la historia del final del Terciario y del Cuaternario: por ejemplo las areniscas blandas y los conglomerados de la formación “Jauja” y las napas aluviales cuaternarias que tapizan la cuenca de Huancayo.

Sobre las bóvedas que trabajan en extensión se esparcen ryalitas y ignimbritas datadas en el Norte de Chile de 12 millones de años para las más antiguas (Rutland-Guest y Grasty). El levantamiento sería, para los Andes del Norte de Chile y de Bolivia, del orden de 4000 m. durante el Plioceno. A fines del Terciario y del Cuaternario el volcanismo físico es reemplazado por un volcanismo explosivo. Da nacimiento a grandes estratovolcanes andesíticos colocados sobre un zócalo somitil; culminan entre 5 y 6000 m. en el Norte de Chile; en el Oeste de Bolivia, en el Sur del Perú como en el Norte del Ecuador y en la Cordillera central de Colombia.

Al pie del bombeo o sobre los flancos de la montaña se desarrolla, especialmente en el Sur del Perú y en Chile central, un sistema de “ba- sins-ranges”, hondonadas subsidentes se cavavan entre los bloques levantándose, incorporando algunas veces eslabones plisados y oblícuos (cuenca
del Huallaga y Cordillera Azul al Este del Perú central, fosa del Guayas y marquetería de los bloques del Manabí en Ecuador. La evolución de ciertas unidades será vista de nuevo durante el estudio del Cuaternario.

II — SUPERFICIES DE EROSION
CIMAS Y GRANDES VALLES

1 — Las superficies de erosión

Los Andes, y en particular en el Perú meridional y en Bolivia donde las montañas alcanzan su mayor ancho, se caracterizan por la extensión de vastas superficies planas o moderadamente onduladas, quedando el alto de las cimas tangente a un plano cercano del horizontal. I. Bowman, en 1909, durante su reconocimiento en los Andes del Sur del Perú bautizó esta superficie con el nombre de “puna”; generalmente corresponde a las grandes extensiones de la estepa herbosa que se halla entre 3800 y 4600 m. en los Andes Centrales.

En Colombia, el macizo de Santander (Norte de la Cordillera oriental) está formado de un zócalo cristalino-esquistoso truncado por altas superficies cortadas por crestas residuales. Al extremo septentrional de la Cordillera Central, “el Oriente antioqueño” es una meseta ondulada entre 2400 y 2700 m. Los granitos de grano grueso del botolito forman anchas cuencas tapizadas de espesas alteraciones arcillosas que alternan con cúpulas rebojadas en media-naranja. Las rocas melanocratas, de granos finos, poco permeables, son puestas de relieve. Una topografía análoga se repite en el Sur de la Cordillera Oriental en el macizo de Garzón. En el Norte del Perú, al Este del Marañón, una superficie ondulada trunca entre 3000 y 3500 m. las series paleozoicas y precámbricas plisadas así como series sedimentarias del “géantclinal” mesozoico del Marañón. Pero es en los Andes centrales donde las mesetas de erosión están más extendidas y son más netas. La “superficie de la puna” corta los calcáreos y las areniscas plisadas mesozoicas al Oeste del Mantaro como los volúmenes de la cadena herciniana al Este. J. Dresch en Bolivia insiste sobre la extensión de los aplanamientos tanto en las mesetas centrales como en el flanco oriental.
de la Cordillera. En el Norte de Chile han sido estudiadas superficies tan-
to por Walker y Clark como por Kenneth Segerstrom. Estos autores des-
ciben una "antigua superficie" ("mature land") que evocaba Willis en 1929.
Sería del "Terciario medio". Está fosilizada por alteritas que tienen su uti-
idad para la búsqueda de yacimientos cupriferos. Raudales de ignimbri-
tas, las más antiguas datadas del final del Mioceno, la cubren por sitios.

El flanco occidental de los Andes Centrales (sobre todo entre el 14°
y el 24° S) ofrece una sucesión de interfluvis rebajándose regularmente
de las altas mesetas hacia el Pacífico. El conjunto evoca un "gipfellüür"
plegado por la gran flexura occidental. Sin embargo, como lo hacen notar
E. Audebaud et al. (1973), la superficie se presenta como un inmenso plan
inclinado en unos sesenta kilómetros de 4400 m. hasta proximidad del
océano. Está fosilizada por un espeso manto de ignimbritas que data del
Mioceno superior. El mismo esquema se encuentra más al Norte entre Naz-
ca y Puquio. La pendiente de la superficie es aquí bastante cercana de una
pendiente de "glacis" (es del orden de 3 a 4°); es pues posible que se haya
elaborada progresivamente en el curso del gran levantamiento mioceno.
Eventualmente al Norte de Camaná podría tratarse de una superficie regu-
larizada por la abrasión marina al comienzo del Mioceno.

2 — La interpretación de las superficies

El paisaje de la puna, allí donde la cubierta volcánica está ausente,
presenta un conjunto de lomas realizadas por barras orientadas o de maci-
zos aislados de dos a trescientos metros de altura alternando con valles
ampliamente ensanchados tapizados de depósitos morrénicos, periglaciares
o fluvioglaciares. Pliegues vigorosos en los esquistos, areniscas, calcáreos
o riolítas están fuertemente truncados, tanto en las series paleozoicas como
en las del Mesozoico. La superficie recorta igualmente los anticlinales y los
síncines que afectan las pelitas y los conglomerados rojos éocenos en el
Perú central. Se nota la rareza de las formaciones correlativas realmente
significativas. Es cierto que una capa de alteritas recubre las rocas intru-
sivas y volcánicas mesozoicas del Norte de Chile, arcillas con nódulos si-
liceos están atrapados en las dolinas de las mesetas kárticas de los Andes
centrales del Mantaro, a veces un desparrame de guijarros consolidados
en conglomerados señala el paso de antiguos ríos y oueds. Estos depósiti-
tos que no están datados no son tampoco significativos de un aplanamien-
to; señalan ya sea alteraciones bajo un clima cálido y húmedo o bien cá-
lido y bastante seco y la existencia de una red hidrográfica distinta de la
actual y instalada en medio de relieves poco marcados.
En los Andes centrales una superficie recorta las "capas rojas". Sin embargo, han podido desarrollarse aplanamientos en el Eoceno y en el Oligoceno sobre los sectores emergidos entre las cuencas llenándose de "capas rojas". El truncamiento de los pliegues en formación ha podido incluso favorecer cabalgaduras durante la fase de compresión miocena. Pedazos aplanados son cabalgados por fallas inversas en el sector de los eslabones de la Cordillera Occidental en el Perú central entre el abra de la Viuda y Huaron. Estas superficies, actualmente culminantes y formando mesetas a más de 4000 m., probablemente se han elaborado por una serie de retoques en los sectores estables o moderadamente móviles durante toda una parte del Terciario antes del Ponciano. Los volúmenes andinos eran entonces reducidos y a escasa altura por encima del nivel de base general. Se trata más bien de una serie de superficies, a veces imperfectamente aplanadas, que de una superficie única formada bajo un mismo sistema de erosión y en función de un nivel de base único.

Sin embargo lo esencial de los aplanamientos mayores en rocas duras parece haberse efectuado posteriormente a la fase de plegamiento fini-eoceno y hasta después de los plegamientos miocenos. En cambio es muy visible que es anterior al hundimiento de las cuencas intra-americanas como la de Huancayo donde se ve la superficie flexurada inclinarse hacia la cuenca, y anterior al gran levantamiento en extensión de los Andes. Sin embargo, como ha podido notarse anteriormente, pudo completarse especialmente sobre el flanco occidental de los Andes centrales durante el levantamiento y ser reacondicionado por la abrasión marina en la orilla del Pacífico. Los aplanamientos mayores en rocas duras serían pues principalmente miocenos.

Algunos autores (Bowman, Mac Laughlin, Dresch en 1958 e incluso Coney en julio 1971) han interpretado las grandes cordilleras nevadas como la Cordillera Blanca y la Cordillera de Huayhuash al Norte de Lima, la Cordillera de Vilcabamba al Oeste del Cusco, las Cordilleras Real y Apolobamba en Bolivia como siendo suntuosos relieve residuales dominando de 2000 m. las mesetas de la "puna". Sin embargo, no se observa ninguna diferenciación en la naturaleza de los volúmenes rocosos de las cordilleras y de las mesetas y la erosión diferencial no ha podido escombrar un espesor de 2000 m. de rocas al pie de las grandes cordilleras. Algunas barras de cuarцитas son puestos de relieve encima de los calcáreos y de las areniscas blandas, stocks intrusivos oligocenos son limpiados de una envoltura más blanda pero se trata aquí de relieves menores que no sobrepasan los 300 m. por encima de las mesetas. En Bolivia hay relieves apalachianos o pseudo-apalachianos bastante notables. En cambio se ve con nitidez que las cordilleras altas son borrosa jalando los sectores de supresión maximal sobre las bóvedas de la cadena. La Cordillera Blanca domina por una gran escarpa de falla aún activa un panel inclinado en el fondo del cual se halla el Santa. En los Andes del Cusco, Marococ distingue el borde de la alta cordillera planos de fallas, normales y funcionales. La supresión de los grandes macizos aparece entonces como un fenómeno reciente sino actual y muy probablemente posterior a la elaboración de las superficies de la "Puna". Sobre los relieves así levantados la erosión limpia los volúmenes resistentes menos fracturados y fisurados que dan las cimas mientras que los campos de fallas radiales guían las vallas modelados en cuna por los glaciares cuaternarios (Cordillera Blanca en el Perú).
3 — Los aplanamientos posteriores al mioceno

Retocando la superficie somital o encajándose en un nivel inferior, se encuentran, en distintas posiciones, aplanamientos localizados desarrollados generalmente en volúmenes blandos salvo en los sectores que bordean el Pacífico en los que ha podido afectar la abrasión marina.

Es así como las series del altiplano boliviano, plegadas a mitad del Plioceno, están truncadas por una superficie de discordancia intrapliocena, imperfectamente aplanada (Audebaud E. etc... 1973).

Las lavas que serían igualmente de comienzos del Plioceno, están cortadas, al Este de Moquegua, por una superficie de discordancia, localmente cubierta por lavas fini-pliocenas y del Cuaternario antiguo. Sobre los bordes septentrionales del altiplano, algunos esquistos están truncados en “glacis” por encima del lago Arapa y algunos calcaríeos están cortados por una superficie encima de las capas aluviales y lacustres cuaternarias en llave (Puno). Se trata probablemente de “glacis” de pediplanación, elaborados por una escorrentía areolar y que ulteriormente pudieron ser retocados por la elaboración lacustre en el momento de la extensión maximal del lago Ballivian. En los altos Andes de Chile, algunos aplanamientos se encajan en la superficie mayor; los autores que los han estudiado los datan del Plioceno. En la parte baja de la vertiente occidental de los Andes, la formación “molasica del Moquegua inferior” está cortada localmente por una superficie de discordancia sobre la cual reposan las arenas y guijarros del “Moquegua superior”; esta superficie de discordancia sería intrapliocena. En las cuencas al pie de los Andes como en los cerros costeños de los departamentos de Áreaquito y de Moquegua en el Perú, se ven aplanamientos netos. Conviene aquí sin embargo hacer la distinción entre las superficies que serían prepliocenas de las que serían pliocenas y hasta cuaternarias. Pero pueden recordarse según ángulos muy débiles dando así aplanamientos muy regulares como los que truncan al SE de Arequipa y al Norte de Camaná el zócalo granítico o volcanno-sedimentario mesozoico. Localmente están recubiertos de tufo volcánicos.

En Chile central y en el Norte Chico, Paskoff y Borde han estudiado superficies, “rasas” del Norte Chico, “planos costeños” de Chile central que han sido aplanados a la vez por la abrasión pliocena y por una escorrentía en napa posterior. En Chile central, emergen encima de la superficie relieves “poncianos”. Paskoff, Borde y Laharie muestran que se trata de paneles momentáneamente estables durante una parte del Plioceno y en el Cuaternario.
4 — Los grandes valles

Una parte de la red hidrográfica está total o parcialmente adaptada a las deformaciones y a los accidentes panto-pliocenos: se distingue una adaptación a una cierta escala que no excluye numerosas inadaptaiones locales. En Colombia, el río Magdalena, el San Juan y el Atrato se alojan en goteras subsidentes durante el final del Terciario. El Cauca y el Patía corren en fosos pero en el Departamento de Antioquia el Cauca se hunde en garganta en un panel en sufrección de la cordillera, panel jugando aún en el Cuaternario. En Venezuela, el Chama está instalado en el graben mediano de Mérida. El Marañón sigue en su trayecto andino una línea de fractura de cerca de 400 km. de largo entre las cadenas de las cordilleras occidental y oriental, pero esta adaptación a la escala regional se acompaña de numerosas inadaptaiones locales: el río corta volúmenes resistentes al lado de masas blandas o se hunde en un bloque levantándose. El Mantaro discurre de cuenca en cuenca en su curso superior. Pero aguas abajo de Huancayo corta sobre 1000 m. el panel en sufrección de las mesetas del Mantaro, sufrección que es en su mayor parte cuaternaria. Guajjaros del río se encuentran a 1000 m. por encima de su talweg actual cerca de Conaica. El altiplano perú-boliviano que según Ahlfield es post-orogénico, es endorreico. Su red hidrográfica está en vías de ser capturada por el retroceso de las cabezas de los valles orientales con ríos mejor alimentados. El río La Poz muerde sobre los depósitos plio-cuaternarios al Oeste de la Cordillera Central. Ríos que corren hacia el Beni nacen al Oeste de las cimas de la Cordillera Oriental traduciendo quizás una antecedencia al levantamiento final del horst de la cordillera. En efecto el trazado de varios ríos atestigua una adaptación anterior a los movimientos de fines del Terciario y del Cuaternario. Laugénie indica que en Chile “algunos valles son prisioneros de las direcciones estructurales NS y se unen al Pacífico a costo de trazados complejos”. Se encajan también localmente por antecedencia en los bloques costeños, levantándose como el Limari. 

En el Perú central los ríos instalados sobre los dos flancos de la montaña están, en conjunto, adaptados a la pendiente del levantamiento. Sin embargo están a menudo guiados por accidentes oblicuos a la dirección de conjunto de la cordillera. Así el Rímac y el Chillón, como más al Norte el río Fortaleza y el río Pativilca convergen aguas abajo en goteras subsidentes y deformadas por la flexura continental que ha seguido jugando en el Cuaternario. En el flanco oriental los ríos siguen direcciones estructurales secundarias: se alojan en corredores abiertos en volúmenes blandos, siguen ejes de fractura pero recortan en gargantas barras duras o bloques que se levantan (ríos del Chanchamayo).
Los grandes valles cavando los dos flancos de la montaña tienen vertientes que alcanzan hasta 2500 m. de mando cuando el arco de la flexura está al máximo de la oposición con el arco inverso de los talwegs. Los valles se fueron cavando a medida que se produjo el levantamiento. Partes planas indican fases de disminución o de paro momentáneo de la subrección y de los períodos de menor erosión linear. Así en el valle del Santa Eulalia, al Este de Lima, un antiguo perfil ensanchado del valle está cerrado por coladas de ignimbritas. El cavado posterior es del orden de 1800 m. A menudo se observa una parte plana a algunos centenares de metros por encima del sector en la garganta de los valles en la parte mediana del curso de los ríos. Mac Laughlin, en 1923, notando que las haciendas, las "chacras" se instalaban sobre esas partes planas había bautizado ese nivel "chacra". Sin embargo el hecho más importante sigue siendo la amplitud del cavado y el vaciado de los valles que sobrepasa 2000 m. en sus partes medias. El retroceso de las vertientes ocasiona el desmantelamiento en cerros de la superficie de la puna doblada por la flexura (al Este de Ica en el Perú central) y la bajada progresiva de los interfluvius por recortamiento hacia lo alto de las vertientes.

El acondicionamiento de los valles, el cavado de los relieves levantados, son esencialmente el hecho de fines del Terciario, salvo quizás en las extremidades de la cadena en Venezuela y en Chile meridional donde serían en gran parte cuaternarios. El modelado de las pendientes es una herencia del Cuaternario, herencia constantemente modificada y retocada por los procesos que actúan ahora.

III.—EL CUATERNARIO

En todas partes el Cuaternario es un período de retoques, de elaboración de los modelados a partir de los relieves heredados del Mioceno; retoques consecutivos a recujustos tectónicos, a manifestaciones y a las consecuencias de los cambios climáticos (4).

---

1 — El límite Plioceno-Cuaternario

En las cuencas intra-andinas y en los grandes valles como en los fosos lindantes, los depósitos pliocenos se distinguen de las formaciones que ahora se datan del Cuaternario antiguo. En Venezuela, sobre los piedemontes y en las cuencas montañosas, rellenos lacustres, deltaicos, compuestos de arcillas kaolínicas, de arenas y de gravas cuarzosas, serían pliocenos. Están generalmente recubiertos por las capas aluviales o toreniciales cuaternarias. En Colombia la formación “Mesa”, que bordea el valle del Magdalena como la formación “Popoyan” en el alto Cauca están formadas de guijarros y de conglomerados volcánicos considerados como pliocenos (5). Bajo la “sabana” de Bogotá, depósitos lacustres de flora y fauna cálidas serían, según Van Der Hammen, del Plioceno. La cuenca de la “sabana” habría obrado en subsistencia desde el Plioceno durante la surrección en bloque de la Cordillera oriental. En la cuenca de Huancayo, la formación “Jauja” es una acumulación fluvio-lacustre compuesta de arcillas y de limos rojos chorreados de las vertientes, areniscas blandas con granos finos y frescos separados por capas de sílice amorfo debidos a la precipitación de tests de diatomeas. Aquí se trata de un depósito en aguas frescas, teniendo entonces la cuenca de Huancayo un clima quizás poco distinto del actual. La formación “Ayacucho” más al Sur es rica en cineritas. Un poco en todas partes en Los Andes y especialmente en la cuenca del altiplano boliviano, se encuentran formaciones datadas ahora del Plioceno (6). Pero el estudio fino de estos sedimentos queda aún a menudo por hacer. Al Oeste de los Andes, abajo de la vertiente flexurada que fosiliza parcialmente, la formación “Moquegua” se divide en dos términos; el Moquegua inferior es una acumulación de molasas pasando a menudo, en discordancia, al Moquegua superior formado de guijarros interestratificados de lechos más finos (7). Las importantes acumulaciones crenáceas y los guijarros de Chincha, al Sur de Lima, son probablemente de la misma época. Finalmente en las fosas en la parte baja de la cordillera (fosa de Guayas en Ecuador, de Lambayeque en el Norte del Perú o de Santiago) una gran parte de la acumulación detritica acumulada sobre varios centenares de metros es un legado del Plioceno.

(5) O del Mioceno superior al Cuaternario antiguo.
(6) Para Harrison la formación Jauja sería pleistocena.
(7) La agrupación bajo el mismo nombre de “Moquegua” de dos series de edades y de facies a menudo diferentes es engorrosa. Sería preferible elegir dos nombres para bautizar el “Moquegua inferior” y el Moquegua superior".
El Plioceno marino es mejor conocido, especialmente en Chile y en el Norte del Perú. En el Norte Chico, Paskoff y Herrn datan del Plioceno las areniscas blandas de fauna cálida panameña de la formación Coquimbo. Los “tablazos” (superficies de abrasión que truncan la cuenca sedimentaria fallada del Norte del Perú y del Oeste del Ecuador) los más elevados tienen una fauna marina pliocena. El Cuaternario se destaca en el litoral del Norte Chico por un enfriamiento y una regresión marina (es el Tongo-yen de Paskoff).

2 — Las glaciaciones andinas

A lo largo del litoral chileno la corriente de Humboldt empezó a comienzos del Cuaternario y se acompañó de subidas de aguas frías en la proximidad de la costa. En el extremo Sur del continente una glaciaciación que se data de dos millones de años sería responsable de la extensión de la napa de gravas que cubre el piedemonte argentino. Weischet que releva la existencia de cuatro glaciaciaciones cuaternarias en la región de los lagos chilenos, encuentra los vestigios muy alterados de una glaciaciación andina del Cuaternario antiguo que se habría extendido hasta el pie de la cordillera de la costa. Esta glaciaciación antigua de las latitudes medias es probablemente contemporánea de la encontrada en los Andes tropicales del Perú. En la cuenca superior del Mantaro un glaciar de meseta recubre el conjunto de los relieves y baja hasta 3600 m; moviliza en morrena de fondo la cobertura detrítica heredada de un periodo más cálido. Estas morrenas están localmente coronadas por napas fluvio-glaciales de varias decenas de metros de potencia. Morrenas y napas han sido ulteriormente encostradas en brechas y conglomerados. En las vertientes calcáreas entre 3000 y 4000 m. derrubios gruesos de gelificación cubren las pendientes. Consolidados por la calcita aún dan su perfil a una parte de las vertientes. Datam del mismo periodo frío. En la Cordillera oriental del Sur del Perú impuestos morrenas de material encostrado o alterado son las herencias de este período. Al mismo tiempo algunos glaciares utilizando las líneas de fractura radial del batolito de la Cordillera Blanca cavaban grandes valles en cuna y depositaban sus morrenas sobre la meseta que domina el surco del Santa.

Esta primera glaciaciación andina duró mucho tiempo. Es posible distinguir los rastros de por lo menos dos grandes pulsaciones. La primera más fría y seca, la segunda más húmeda. Después nunca los glaciares bajaron tanto. Las morrenas heredadas de esta glaciaciación son más importantes
que las dejadas por las glaciaciones más recientes y los fragmentos de gelificación son más gruesos, lo que traduce probablemente heladas más intensas que en el curso de las fases frías siguientes.

En los Andes centrales un largo interglacial se manifiesta primero por el encostramiento de los depósitos, por su alteración que va hasta la elaboración de arcillas (illitas y kaolinitas), por la descomposición de los bloques graníticos y la desagregación de las areniscas por deferuquinización. Las capas de detritos de los fondos de los valles están cortadas en terrazas por ríos menos cargados.

Más o menos en todas partes se notan dos grandes crisis glaciales más recientes, datadas del Cuaternario medio y reciente que Th. Van Der Hammen en Colombia, Auer y Lauer en Chile, J. Tricart para el conjunto de la cadena, ponen en paralelo con las glaciaciones del Riss y del Würm de la Europa media. En los altos Andes centrales, después del largo interglacial, glaciares coalescentes se espacenan sobre las mesetas situadas a 4000 m. en la parte baja de las cordilleras. Después de la fusión de este glaciar de piedemonte, otros glaciares de valle traducen crisis recientes, dejando cada pulsación un arco morrenico más arriba del cual se encuentra el arco más reciente. En Chile se observa un interstadio entre —30000 y —20000 años; el recrudecimiento datado de —14000 a —12000 años corresponde a un interstadio al Tardiglacial de Europa.

La altitud del frente de los glaciares tropicales estaba en función de las precipitaciones, del régimen térmico, de la amplitud y de la disposición del volumen montañoso. En los Andes secos tropicales y subtropicales, los glaciares no se rebajaron por debajo de 4200 m. mientras que se observan morrenas a 2400 m. en el valle del Urubamba, al pie de las cimas de la cordillera de Vilcabamba. En Chile central, donde los frentes de los glaciares actuales están hacia 3400 m, los glaciares cuaternarios han bajado hasta 1800 m (las huellas a 1100 m son menos seguras) y en la región de los lagos la última glaciación (16000 — 12000 B.P.) ha expandido sus lóbulos sobre el piedemonte. Chorros periglaciales, taludes de gelificación sobre las vertientes son contemporáneos de las glaciaciones tanto en Chile central como en los Andes centrales.

3 — La interpretación de los cambios climáticos

Se plantean dos preguntas: Hay sincronismo entre las glaciaciones a todo lo largo de la cadena, de la Sierra de Santa Marta a la Tierra de Fuego? Corresponden las glaciaciones al mismo tipo de cambio climático?
Las dataciones obtenidas para las últimas pulsaciones glaciares del Cuaternario y del Holoceno permiten contestar afirmativamente a la primera pregunta. Van Der Hammen para la “sabana” de Bogotá, por 49°5 de latitud N. Lauer por Chile templado, indican que por una parte hay sincronismo entre las glaciaciones tropicales y las glaciaciones de las latitudes medias en el hemisferio Sur, por la otra correspondencia entre las glaciaciones de las montañas templadas del hemisferio Sur y las de los Alpes, al menos para el Cuaternario reciente. La regresión glacial registrada en la primera mitad del siglo XX se nota en la Tierra de Fuego como en las altas montañas tropicales.

Conviene sin embargo tener en cuenta, al establecer una cronología fina, de los intervalos en el tiempo ligados a la existencia de volúmenes de hielo distintos. El tiempo de respuesta al calentamiento de un inlandsis no será el mismo que el de un glaciar de montaña. Estos intervalos en el tiempo pueden alcanzar varios millares de años; la fusión de los glaciares montañosos de las latitudes tropicales estará terminada mientras que la subida eustática del nivel de los océanos, parcialmente originada por el descenso de los grandes glaciares continentales, estará a penas comenzada.

En cambio, las glaciaciones no parecen corresponder al mismo estilo de variaciones climáticas. En las medianas y altas latitudes el enfriamiento que puede alcanzar una decena de grados se acompaña de un debilitamiento de las precipitaciones. Las glaciaciones patagónicas son debidas a un descenso de las temperaturas acompañado de una disminución de las precipitaciones, actualmente muy abundantes y ligadas al paso de las depresiones ciclónicas del Oeste. J. Tricart observa sobre la fachada atlántica de Argentina y de Chile que los depósitos periglaciares cuaternarios eran debidos a un clima más seco que el Actual.

Para W. Fairbridge (1970) los períodos fríos de las latitudes medias se marcan por un debilitamiento de la pluviosidad en la zona intertropical. Y unos geógrafos alemanes que trabajan en las altas montañas del África tropical señalan que las glaciaciones cuaternarias van acompañadas de una disminución de las precipitaciones. Troll piensa que la extensión de los lagos cuaternarios del altiplano corresponde a los “interglaciales” y señalaría un aumento de la pluviosidad. En el Chile árido (entre el 18° y el 27° de latitud Sur) las formaciones lacustres de la pampa del Tamarugal corresponden al esparcimiento de las napas fluvo-glaciales y a la construcción de las morrenas en la montaña a más de 4500 m. En el sector de transición entre el terreno sub-tropical y las latitudes medias, Poskoff indica que en el Chile actualmente semi-árido (entre el 30° y el 33° de latitud Sur), durante los períodos fríos, el flujo de aire atmosférico de Oeste estaba desviado de 5° a 6° hacia el Norte, originando un aumento de las precipitaciones, señalándose por crecidas glaciales en la sierra. Un poco más al Norte, entre el 27° y el 30° el “desierto marginal” estaba en un sector neutro entre los dos sistemas climáticos: el de la zona tropical y el de las latitudes medias, originando modificaciones pleistocenas más discretas que en otras partes, marcándose sin embargo por la formación de glaciares rocosos en la cordillera hacia 5000 m, y el esparcimiento de derrumbes de gelificación sobre los vertientes de la alta montaña. En los Andes tropicales al Sur del Ecuador, los períodos fríos en la alta montaña se caracterizan por un descenso de las temperaturas medias anuales del orden de 6° a 8° pero sobre todo por la atenuación de las diferencias entre una estación seca y una estación húmeda.
La nebulosidad era más constante durante el año y la pluviosidad mejor repartida (O. Dolfin). Los estudios de palinología hechos por Van Der Hammen en Colombia y especialmente en la "sabana" de Bogotá conducen a las mismas conclusiones. Sin embargo, en esos Andes húmedos y climáticamente ecuatoriales, a altura y a latitudes iguales, las temperaturas médicas son más bajas que en los Andes peruanos, lo que ha originado un descenso de varios centenares de metros del límite de los glaciares.

Los períodos interglaciales se caracterizan por un retorno a estaciones bien definidas: una estación seca asoleada, con fuertes contrastes térmicos diurnos en un aire muy seco y una temporada de invierno húmeda, con débiles amplitudes de temperaturas; estas últimas siendo probablemente más elevadas que actualmente y con posibilidades mayores de alteración. No se ve muy claro cómo con este sistema climático, el aumento de los lagos del altiplano perú-boliviano puede corresponder a los interglaciales; parece al contrario que la nebulosidad más fuerte de los períodos fríos favorecía a la vez la extensión de los glaciares y la de las nápas lacustres. Por otra parte, al borde del lago Titicaca, depósitos de gelificación cuaternaria se intersecan en pie de las vertientes con arcillas lacustres: que señalan los altos niveles de los lagos cuaternarios.

4 — Las acumulaciones aluviales y fluviales cuaternarias

Como en todas las regiones del mundo presentando fuertes desniveles y donde la dinámica de las vertientes es particularmente activa, las grandes acumulaciones detríticas (napas de guijarros, chorros barrosos de material heterométrico, derrames semi-desérticos y, por partes, asociados a esos depósitos, tufos y cineritas allí donde el volcanismo cuaternario permanecía activo) rellenan los fondos de los valles internos y de las cuencas, se expanden sobre los piedemontes tanto en el terreno seco del desierto perú-chileno como sobre las llanuras del Oeste de la Amazonia. Estas nápas detríticas están recortadas en terrazas o se recubren sucesivamente en los sectores subsidentes. Pueden ser deformadas por la tectónica cuaternaria o presentar la disposición que tenían cuando se colocaron. Además de su interés para la comprensión y el acomodamiento de los modelos actuales y eventualmente para su utilización por el hombre, su interpretación es esencial para la comprensión de la morfogenesis cuaternaria. Esto se revela para el conjunto de la cadena infinitamente más delicada que el análisis de las formaciones glaciares en la medida en que fenóme-
nos locales vienen a interferir con los fenómenos que intervienen a la escala regional o del conjunto de la cadena.

J. Tricart que, el primero, tuvo directamente, o por discípulos interpuestos, un conocimiento más o menos completo de la geomorfología de la cadena de los Andes (a excepción de su extremidad meridional) encuentra desde Venezuela hasta Chile central cuatro napas distintas que bautiza adaptando una cronología regresiva t I, t II, t III y t IV. Así, en la fosa del Chama (Venezuela), t IV (formación Lagunillas) es un relleno atrapado en un graben bajándose: se caracteriza por una buena tria granulométrica, por el puntiagudo bastante elevado de los guijarros, por la ausencia de bloques gruesos. En cambio, t III está formado de aportes laterales, heterométricos donde se mezclan bloques y arcillas. Se trata de un material de chorros barrosos, de lavas torrenciales asociadas a veces a sacudidas sísmicas. Las napas más recientes t II y t I se destacan por aportes laterales pero de menor amplitud y, hacia arriba, los derrubios ordenados, formaciones de pendiente periglaciares se interescratifican lateralmente con esos depósitos mientras que, en la alta montaña, se comprueba su empalme con acumulaciones de obturación glacial. Las dos últimas fases son contemporáneas de las dos glacaciones recientes. En Perú, tanto en la montaña como en los piedemontes se encuentran esas cuatro napas cuando las condiciones topográficas se prestan a ello. En la cuenca de Huancayo, posteriormente al depósito de la formación "Jauja" cuatro terrazas de distinto material se encajan. Su volumen está en función de su antigüedad, la napa más antigua siendo la más importante, como también aquella en que el material es más grueso. Está plegada en anticlinales estrechos y en amplios sinclinales de fondo plano. Este material aluvial se empalma parcialmente con derrames periglaciares de las vertientes. Pero parece ser que el depósito de estos guijarros corresponde a la fase de deshielo de los grandes glaciares de la montaña. Cuatro napas se observan también en las cuencas preamazónicas (Huallaga y Chanchamayo); las más antiguas están deformadas y constituidas de un material más grueso que las más recientes. Las terrazas t I y t II se encajan generalmente en los espesos derrames anteriores. En el desierto del Sur del Perú, t IV constituye "la napa de las pampas", rica en cenizas volcánicas; está formada de guijarros de tipo fluvial y, según Laharie, correspondería a una fase resistásica. A veces no constituye, sino el delgado empedrado de los grandes "glacis" de erosión que cortan las formaciones "Moquegua"; t III la modifica en superficie y agrega el aporte localizado de lavas torrenciales. Alejándose de los bordes de la montaña, las acumulaciones toman la facies de derrames áridos donde alternan las capas pelúcicas de arenas y de limos (las "llapanas" de la terminología peruana). t I y t II son las napas aluviales entalladas en terrazas en el fondo de los valles actuales.

En los Andes tropicales al Sur del Ecuador (más tropicales que los del hemisferio Norte como resultado del desplazamiento en este hemisferio del ecuador termoclimático), las napas aluviales de las cuencas intra-Andinas corresponden a la fase de retiro de los grandes glaciares formados durante períodos más frescos y más húmedos del Cuaternario. So-
obre los flancos secos de los Andes, donde se cavan los grandes valles, las acumulaciones terrienciales están ligadas a las grandes fases de arranque, de deslizamiento y de escorren-
tia consecutivos a los aguaceros de los periodos glaciales. Los aportes laterales sobrepasa-
zan entonces la capacidad de trasporte sin embargo aumentada del río. Durante los inter-
glaciales (o los interpluviales), disminuyendo la carga más rápido que el caudal como con-
ssecuencia de la estabilización de las vertientes, los ríos entallan en terrazas las acumula-
ciones. En el actual desierto han necesitado grandes cantidades de agua concentradas en
cortos momentos para transportar el cascojo y los guijarros que forman los derramas coales-
centes y a veces superpuestos al pie de la montaña. Es probable que las fases con agua-
ceros no modifiquen la tendencia general árida del clima. Una disminución del vigor del an-
ticiclo del Pacífico Sur y un debilitamiento de su subsidencia oriental, la disminución de
la corriente de Humboldt contribuirían a mantener un tiempo seco, sin niebla. Es en este
ambiente seco que el paso de masas de aire ecuatorial húmedo sobre la vertiente pacifica
provocaba violentos aguaceros sobre el desierto y el piso inferior de los Andes. Cuando
los talwegs están en pendiente fuerte las acumulaciones detríticas se efectúan durante las
fases de aguaceros en el curso inferior de los ríos, mientras que cuando la pendiente es
suave, como lo señala Paskoff en Chile, son las variaciones eustáticas las que ordenan el
depósito de las bajas napas aluviales.

En Colombia Kibedi y Usselmann, indican que las grandes acumulaciones detríticas
serían correlativas de periodos más secos con aguaceros. La vegetación es entonces descon-
tinua y las pendientes son más sensibles al chorro y a las acciones terrienciales. El paso
de un sistema microgenético a otro se efectúa por el pasaje de umbrales fácilmente tran-
queables. Basta con que durante algunos años el reparto y el estilo de las precipitaciones
sean distintos, el total anual de las lluvias pudiendo permanecer igual, para que los mo-
vimientos de masa y los fenómenos terrienciales prevalezcan sobre el chorro difuso y la
reptación.

La explicación de las acumulaciones aluvio-terrienciales en el domi-
nio cálido y húmedo es delicada. Dos observaciones aparentemente con-
tradictorias han sido hechas. Deslizamientos bajo selva se producen sobre
pendientes fuertes, especialmente cuando los volúmenes rocosos están di-
clasados y alterados (batolito de la Merced). La caída de los árboles du-
rante las tormentas provoca desgarramientos sobre la vertiente que son lue-
go utilizados por el chorro terriencial. Sobre vertientes de la misma nat-
ura leza pero bajo cubierta herbácea se nota que los movimientos de masa
 tienen menor amplitud. Las acumulaciones terrienciales corresponderían en-
tonces, en este tipo de relieve, a períodos húmedos, a estación seca corta,
que permite el desarrollo de la selva. Sin embargo, sobre pendientes me-
nos fuertes (inferiores generalmente a 20°) la selva densa parece ser un
factor que limita los movimientos de masa y el chorro. El caudal colu-
vial sobre la vertiente sería entonces más considerable bajo sabana. Las
acumulaciones de elementos finos, arenas, guijarros y arcillas corresponde-
rian en este caso a un sistema climático caracterizado por una vigorosa al-
ternación de las estaciones, una larga estación seca (impidiendo la cobertura
forestal de sombra) sucediendo a una estación de lluvias violentas. Al
pie de los Andes húmedos las acumulaciones aluviales y terrienciales cu-
ternarias parecen corresponder a periodos de fuertes lluvias, favoreciendo
el aumento del caudal sólido en la superficie de las vertientes.
La interpretación de las formaciones detríticas ligadas a la zonalidad y al escalonamiento se complica por fenómenos azonales. Borde ha señalado justamente la importancia de los depósitos ligados a los movimientos sísmicos. En Chile central derrumbes y deslizamientos provocados por temblores alimentan las lavas torrenciales. Rupturas glaciares provocan avalanchas de hielo que se transforman en lavas torrenciales de un extremo poder del tipo de las que el 10 de enero 1962 destruyeron Ranrahíra y el 31 de mayo 1970 hicieron desaparecer Yungay en el "Callejón de Huaylas" al pie del Huascaran. Las fisuras abiertas en las formaciones de pendientes a consecuencia de un sismo facilitan la filtración de las aguas y la movilización del material por movimientos en masa. Explosiones volcánicas al desprender importantes cantidades de vapor de agua provocan lluvias torrenciales que al caer sobre un material blando provocan los "lahars". Puede agregarse la fusión rápida del hielo que cubre un volcán en el momento de la explosión. Chorros torrenciales de 50 a 100 m. de espesor en la región de Arequipa, son debidos a la explosión del Pichu Pichu y al deshielo probable del casquete de hielo que lo cubría entonces.

5 — La tectónica cuaternaria

Las señales de la neotectónica se ven en las deformaciones que afectan las napas detríticas, por la frescura de escarpas de falla y en algunos aspectos de la red hidrográfica.

En el flanco oriental de los Andes dominan las flexuras, pasando a veces a plieques fallas oblicuos hacia el Este. A lo largo del piedemonte de los llanos y de la cuenca amazónica en Venezuela y en Colombia, las terrazas del Cuaternario antiguo (t IV y t III), alteradas y rubificadas están frecuentemente flexuradas con buzamientos que alcanzan 30° y localmente 60° (entre Barinas y Acatiguá en Venezuela). En el Perú, en Tingo María como en San Ramón, la napa más antigua sigue la deformación del piso inferior de la montaña; hay guijarros suspendidos a 450 m encima del curso actual de los ríos. Fallas inversas están aún activas en el NW de Argentina.

En el flanco occidental se nota ya sea la continuación de subsidencias (cuencas del Guayas, del Atrato y del San Juan), ya sea la existencia de fallas normales con hundimiento de paneles situados del lado externo. En Venezuela, entre los Andes y el lago de Maracaibo, los conos del Cuaternario antiguo están bruscamente cortados por fallas. Se comprueba
también el juego solidario de vastos paneles que se levantan y unen el burlete costeño, la cuenca de piedemonte y el piso inferior de los Andes con el hundimiento de paneles en el Pacífico: así en el Sur del Perú entre Camaná y Mollendo. Los accidentes transversales son igualmente frecuentes. Los “tablazos” del Norte del Perú están combados oblicuamente (Collin Delavaud). La fosa de Tacna descrita por J. Tricart se forma en el Cuaternario, perpendicularly al gran codo perú-chileno. Otros accidentes oblicuos, generalmente secundarios, se observan en las cuencas y el burlete costeño en el departamento de Arequipa.

En los Andes, hay fosos que continúan hundiéndose (Andes de Mérida). En la región de Huancayo (Andes centrales) se tiene a la vez, después del depósito de “Jauja”, la persecución de la subsidencia de la cuenca compensada por el levantamiento de un bloque aguas abajo de Huancayo y una compresión local que plega en anticlinales estrechos y en anchos sinclinales (O. Dollfus y F. Megard 1968). Al pie de la Cordillera Blanca, algunas fallas se ponen en movimiento durante los grandes sismos y desnivelan las morrenas recientes. En cambio, las observaciones hechas en Chile después de los grandes terremotos de 1960 (Platker y Savage muestran que esas sacudidas están acompañadas de deformaciones con un gran radio de curvatura, dando un anticlinal asimétrico orientado NS). La plataforma continental se levanta de 5 a 6 m mientras que la cordillera de la costa se hunde de 1 a 2 m Estas transformaciones están ligadas a las fuerzas que se ejercen de una y otra parte a lo largo del plan de Benioff que se hunde bajo el continente a partir de la gran fosa oceánica chileno-peruana. La placa de la isla de Pascua deriva hacia el este de 5 a 6 cm por año mientras que América se desplaza hacia el Oeste 2 cm. por año.

IV. LOS SISTEMAS MORFOGENETICOS Y SUS CONSECUENCIAS SOBRE LOS MODELADOS

1 — Los sistemas azonales

Rigen la evolución de las pendientes fuertes ligadas al hundimiento de los valles. Están sujetos a la pendiente de las vertientes (igual o superior a 40°). La superficie de estas vertientes es particularmente móvil.
Los movimientos de masa representan un papel importante; son facilitados por la trituración del material rocoso, la frecuencia de las alteraciones de origen climático o hidrotermal, las sacudidas sísmicas y las fisuraciones superficiales que las acompañan. La forma de la vertiente terminándose frecuentemente hacia abajo por una garganta, y el socavamiento por el río de la base de la pendiente intervienen igualmente. Sin embargo, las condiciones de la dinámica de las vertientes cambian del dominio húmedo, tibio o caliente, favorable al desarrollo de una cobertura forestal, incluso sobre pendiente fuerte, al dominio climático caracterizado por la alternación de una estación seca y de una estación de fuertes lluvias. Acciones nivales (avalanchas, chorreos y solifluxiones nivales) se ejercen en el dominio fresco y húmedo de las latitudes medias.

Figura 1 Los grandes medios de los Andes tropicales en la época actual

1: Dominio cálido y húmedo
1 a: cobertura de selva densa ombrófila mantenida mediante temperaturas medias anuales superiores a 23º, mediante precipitaciones superiores a 2 m, por la brevedad de la estación seca (prácticamente ningún mes sin lluvia). Fuertes meteorizaciones terracíticos; importancia de la lixiviación y rapidez del ciclo del nitrógeno. Alturas inferiores a 800 m. Relieves de colinas, modeladas por deslizamientos y desprendimientos incluso bajo selva y llanuras aluviales de nivel de base donde los ríos describen meandros. Las terrazas cuaternarias, por lo menos las más antiguas están meteorizadas. Agricultura de pan llevar en áreas desmontadas, acompañada generalmente de largos barbechos forestales, arboricultura de plantaciones; cría de ganado para la carne. Ocupación del espacio discontinua, en "archipiélagos".

1 b: dominio cálido, hiperhúmedo (Choco). De 4 a 12 m de precipitaciones por año; prácticamente ninguna semana sin lluvia. Selva densa. La agricultura está sujeta a limitaciones por una lluviosidad excesiva.

1 c: sabanas y selvas galerías (Llanos). La temperatura media anual es superior a 24º pero las amplitudes térmicas diurnas y estacionales son más marcadas que en 1 a; temporada seca abarca la mitad del año. Las alturas son generalmente inferiores a 500 m y salvo sobre las cimas calvos de los "pajonales" del Perú, el relieve se compone de llanuras de derrame, con modelado en terrazas, recortadas a veces en "glacis" y atacadas por los amplios lechos mayores de los ríos que tienen a veces canales anastomados. Es un sector de cría extensiva de bovinos.

2: Piso llamado "templado" en Colombia. Altura comprendida entre 800 y 1800-2000 m. Temperaturas medias comprendidas entre 12 y 20º; lluvias entre 2 y 4 m. por año. Selva densa. Las pendientes son generalmente fuertes (superiores a 25º). Lixiviación y meteorización; chorreo sobre suelos saturados en agua y desprendimientos especialmente en los esquistos. Es el piso de los cafetales, especialmente en Colombia, con mantenimiento de algunos árboles de sombra. Fuerte densidad de población. En Bolivia es el piso de las "yungas" al viento-externas.

3: Piso llamado "frío" en Colombia; a veces "quechua" en Perú. En Colombia: Alturas comprendidas entre 2000 y 2800 - 3000 m.; temperatura media anual entre 8 y 12º; precipitaciones comprendidas entre 1500 y 3000 mm.; numerosas neblinas. Sobre las pendientes externas, la selva de altura de epífitos y helechos se aterra en las vertientes fuertes; puede alcanzar 3800 m. en Bolivia donde por otra parte las oscila-
ciones térmicas de estación son más marcadas. Es la "Nebelwald". Deslizamientos y arranques en las pendientes fuertes. En las mesetas o en los valles de vertientes suaves, con neblinas menos constantes y precipitaciones más débiles (alrededor de un metro de agua por año), cultivos de trigo, de cebada, de papas: maíz en la parte inferior del piso. Cría de ganado en las praderas ganadas mediante desmonte.

4: Cuenca y valles en posición interna entre 1800 y 3600 m. en los Andes colombo-ecuatorianos y 3400 m. en los Andes peruanos-bolivianos. Situación de abrigo. Temperaturas medias comprendidas entre 10 y 16°; fuertes diferencias térmicas con heladas en estación seca por inversión térmica en el fondo de las cuencas. Buena insolación. Lluvias concentradas sobre 3 a 5 meses; precipitaciones comprendidas entre 400 y 600 mm. Vertientes convexo-planas con barrancos y fondos de cuencas tapizados de terrazas, a veces retozadas en "glacis". Suelos rubificados, tal vez heredados, y encostramientos calcáreos localizados en la parte baja de ciertas vertientes. Vegetación de bandas de lupinos; algunos cactos y retamas. Sectores de agricultura esmerada recurriendo a veces a una irrigación complementaria. Maíz, trigo, alfalfa, papas. Cría de ganado bovino y caprino.

5: Sectores de estepas arboladas, cálidas o templadas.
5 a: Grandes vertientes del flanco occidental de los Andes peruanos entre 2000 y 3500 m. Pendientes fuertes (entre 25 y 45°), cortadas de paredes. Estepa de arbustos; "ce- reus" abundantes en la parte inferior del piso. Temperatura media comprendida entre 12 y 18°. Buena insolación. Vientos orográficos. Algunos chubascos y nieblas durante el invierno (entre 200 y 400 mm.) que permiten el crecimiento de gramíneas. Chorro y desprendimientos. Son a menudo los puntos de partida de lavas terrienciales, cuyo material obstruye el fondo de los valles. Los cultivos están localizados en las partes planas y en las pendientes acondicionadas con terrazas. Una irrigación complementaria es necesaria, sobre todo en la parte inferior, más seca, del piso. Trigo, maíz, alfalfa. La cría de bovinos y caprinos contribuye a degradar la lana sobre las pendientes.

5 b: Fondo de gran valle abrigado y supercaliente (Cauca en Colombia, Marañón en Perú); altura inferior a 1000 m.; temperatura media superior a 22°; fuertes contrastes térmicos (los máximos pueden alcanzar 40°). Pocas lluvias, en forma de chubascos, repartidas entre algunos meses (entre 200 a 500 mm.). Chorro bajo el chaparrón. Meteorizaciones superficiales generalmente heredadas pero la rieza debe proseguirse actualmente. Algunos cultivos extensivos y aleatorios de largos barbechos. La irrigación eventual de los fondos de valles permite el cultivo del arroz. Cría extensiva de bovinos y caprinos, en estepa de espinos y cactus.

5 c: Colinas y valles del Manabi (Oeste del Ecuador). Relieve de colinas y de anchos valles aluviales. Material constituido de series sedimentarias —margas, arcillas, areniscas— falladas. Altura inferior a 1000 m., temperatura media comprendida entre 22 y 24°; algunas lluvias; neblina alrededor del litoral. Chorro activo en la estepa arbolada; erosión lateral de las orillas en los valles durante las inundaciones. En los fondos de los valles, cuando la irrigación es posible, planitales y arrozales; cría de ganado mediocre en el "bush".

6: Vertientes planas, rocosas del flanco seco de los Andes peruanos (1000 a 2000 m.). Pendientes comprendidas entre 25 y 35°, cortadas con algunas paredes y tapizadas, localmente, de derrubios. Erosión actualmente reducida, salvo durante los aguaceros excepcionales. Formación de pártica sobre los bloques rocosos; fondo de los valles ocupado por un material de lavas terrienciales. Sector de fuerte chorro acompañado de descascamiento de bloques (batolito dioclasiso y fracturado) durante las fases de aguaceros del Cuaternario. Cultivos dispuestos en cintas en los fondos de los valles cuando la irrigación es posible.
LA CORDILLERA DE LOS ANDES

7: Desierto costeño.
7 a: Desierto tubo interno. Temperatura comprendida entre 17° y 22°; altura entre 300 y 1500 m.; 2000 en el Sur del Perú. Elementos de vertientes rocosas, cortadas en el batolito y en las series mesozoicas. Pendientes rociadas por arena eólica. Grandes "glacis" de acumulación y de erosión heredados del Cuaternario; superficie en regas, pequeñas dunas; suelos a menudo salinos y yesosos en el Sur. Irrigación por derivación de los ríos y por pozos sobre las terrazas y acumulaciones cuaternarias. Cultivos intensivos: algodón, azúcar, cultivos de pan llevar y arborecultura; maíz y acai para la cria de ganado. Manchas locales de fuertes densidades, separadas por vacíos humanos.
7 b: Desierto litoral. Temperatura entre 16 y 18° débiles variaciones térmicas diurnas y de estación; grado higrométrico cercano a la saturación entre mayo y setiembre; numerosas neblinas y capa de estratums permanente durante varios meses. Las neblinas ("garías") permiten el crecimiento de tierras dacias y de algunas plantas eímeras. Relieves rociados de arena; algunos efectos de salas a proximidad inmediata del Océano; acciones marinas activas a lo largo de la costa bajo la acción de la gran marea del SSW.

8: Dominio de las altas alturas con vegetación.
8 a: "Páramos" de Colombia y del Norte del Ecuador. Alturas comprendidas entre 3000 y 4000-4400 m.; temperaturas medias inferiores a 10°; algunas heladas nocturnas. Precipitaciones comprendidas entre 1000 y 2500 mm.; algunas granizadas. Vegetación de matorrales —espeletas; "frailejones"— que crece en suelos podzólicos; topografía de mesetas onduladas, de flancos de volcanes o antigua depressiones ocupadas por turberas. Modelo heredado por una parte de las glaciaciones cuaternarias (circuitos, pedazos de cuna, morrenas a menudo meteorizadas).
8 b: "Funas", estepa herbácea con gramíneas y festucas —hojas ásperas— "el ichu"; plantas en cohortes; algunos bosquecillos de "polylepis" hasta 4200 m. Actividad biológica y pedológica frenada por el frío debido a la altura comprendida entre 3800 y 4800 m. Temperaturas medias entre 8 y 0°; heladas nocturnas constantes en temporada seca; precipitaciones comprendidas entre 500 y 1000 mm., cayendo sobre todo de octubre a abril. Nevadas y chubascos de granizo, sobre todo en las estaciones. Acciones periglaciares actuales limitadas. Topografía de mesetas o de altos llanos, cubiertas de morrenas, de depósitos periglaciales o lucustros cuaternarios; algunos lagos y turberas. Terreno de clima extensivo de corderos, alpacas, llamas y bovinos; algunos cultivos marginales (trigo, cebada, papas, quinua) en los sectores abrigados.
8 c: Estepa de "tolares". Altura comprendida entre 3800 y 5000 m. Temperatura media inferior a 6°; fuertes heladas nocturnas; menos de 500 mm de precipitaciones; larga estación seca; algunos chubascos de nieve. Aire muy seco, provocando violentos y rápidos contrastes térmicos. Acciones periglaciares reducidas del hecho de la sequía; sublimación de la nieve. Actividad biológica frenada por frío y sequía; algunas plantas en cojinetes y arbustos resinosos, de crecimiento muy lento. Topografía de amplias mesetas volcánicas y de flancos de conos. Anchos cuencas endorreicas con eflorescencias o costras salinas. Pocos pastos para una cria muy extensiva de alpacas y de corderos.

9: Alta montaña.
Paredes glaciales o rocosas sometidas a la gelificación, favoreciendo el desarrollo de taludes criónivales. Pequeños glaciares en fondos de circo o de paredes. Placas y casquetes glaciales sometidos. Glaciares rocosos en los sectores secos. Altura superior a 4700 m; temperatura media próxima o inferior a 0°. Relieves vigorosos; cimas de
los volcanes, altas cimas, grandes paredes; cunas y circos glaciales desarrollados durante los períodos fríos cuaternarios.

Se encuentra en los Andes toda la gama de los movimientos de masa descritos por Avenard. Usselmann los ha cartografiado en ciertos sectores de los Andes colombianos. Lo más frecuentes son las ondulaciones generalizadas (amplias ondulaciones de Avenard y los golpes de cuchara). Los primeros son debidos al franqueo del límite de plasticidad favorecido por la infiltración del agua en la masa de un material particularmente arcillo-so. Se les encuentra sobre las pendientes de la Cordillera oriental del Perú donde los esquistos alterados constituyen un material particularmente favorable. Los golpes de cuchara son arañazos de algunos metros; están provocados por el franqueo localizado y rápido del límite de liquidez en un material en cuyo interior ha podido acumularse una bolsa de agua (Usselmann). Estos golpes de cuchara se ven tanto en las vertientes bajo selva donde la caída de los árboles durante las tormentas los favorece como sobre las vertientes cultivadas mediante canales de irrigación imperfectamente conservados. Los golpes de cuchara pasan a coladas barrosas en talwegs elementales cuando la alimentación en agua está mejor asegurada.

Los deslizamientos en un plano forman vertientes enteras especialmente allí donde la trituración por diaclásas y la esquistosidad de las rocas constituyen elementos favorables. El plano de esquistosidad o la diaclase, impregnados de arcillas de alteración, se convierten en planos de deslizamiento cuando son conformes o cercanos de la pendiente de conjunto de la vertiente. Estos deslizamientos parten “en plancha” con un nicho neto aguas arriba mientras que aguas abajo se encuentra el material removido. Pasan a despegamientos sobre las pendientes fuertes o cuando corresponden a un plan de trituración particularmente neto. Se producen igualmente bajo bosques con una vegetación descon-tinua. Los movimientos sísmicos intervienen en el desarrollo del deslizamiento y después por el efecto de fisuración superficial que provocan en un material blando; las fisuras abiertas, profundas de varios metros, concentran las aguas de chorreo y favorecen el franqueo rá-pido y localizado del límite de liquidez de las arcillas, provocando el movimiento de pa-quetes enteros sobre la pendiente.

La naturaleza y la disposición de los volúmenes rocosos intervienen. La alteración de las cineritos y de las coladas de lavas así como la de los bancos margosos y areniscosos en los flyschs son favorables a los deslizamientos generalizados que afectan el conjunto de una vertiente. Hay que agregar las distintas formas de chorreo y las acciones ligadas a la solución, la ruptura viscosa, especialmente en las pendientes poco cubiertas al comienzo de la estación de lluvias (está marcada por el franqueo del límite de liquidez sobre algunos centímetros). En todas partes se observa escorrentía en canalitos durante las lluvias; el chorreo oblícuo es activo bajo lecho, orgánico, especialmente en el piso de la “selva nublada”.

Estos procesos de erosión se encuentran en todas las montañas del mundo, donde las grandes vertientes están desarrolladas y están sometidas a la acción de las lluvias. Son particularmente notables en los Andes colombianos donde la relación superficie en vertientes/volumen montañoso es más elevado que en los Andes centrales donde las superficies planas, me-setas y altiplanos cubren una gran parte del conjunto montañoso.
2—Los sistemas ligados a la zonalidad, al escalonamiento y a la exposición. Hielo, nieve y heladas

Ninguna montaña en el mundo presenta semejante escalonamiento de las formas glaciares y periglaciares. El límite de los glaciares está a 6000 m. en los Andes áridos subtropicales mientras que lengüas de hielo descienden hasta el nivel del mar en Patagonia chilena. Los glaciares están ausentes del piso desértico donde la temperatura media es de varios grados bajo 0° pero se extienden en lóbulos en selvas de "notofagus".

Los glaciares ecuatoriales están generalmente por encima de los 4600 m. (grandes volcanes de Ecuador). Las formaciones fluvialiglaciares son muy reducidas y a veces ausentes; esto debe ponerse en relación con la debilidad de las diferencias térmicas y pluviométricas estacionales y a un deshielo unido a la alternación cotidiana de la helada nocturna y del deshielo limitado diurno.

Los glaciares tropicales tienen límites inferiores en función de la amplitud de la cuenca de alimentación, de la importancia de las precipitaciones y en cierta medida de la exposición. Los frentes están entre 4500 m. para los Andes tropicales húmedos por debajo de cimas que sobrepasan 5500 m (cordilleras de la región de Cuzco) y 6000 m. en los Andes áridos (volcanes que dominan Arequipa). El vigor de los contrastes térmicos, especialmente en estación seca, origina el paso rápido de la nieve al nevé y del nevé al glaciar. Formas de fusión ("pénitents") se desarrollan sobre los névés. El hielo está netamente estratificado. Los glaciares son de distintos tipos. Glaciares de pie de pared cubren pendientes superiores a 75°; están formados por capas de hielo muy duras adhiriendo a la roca, ligados con efectos de escarchado y están revestidos de una capa más blanda burilada en "iceloot" que parte de las cimas orladas de hongos de nieve (Cordillera Blanca). Glaciares de pie de pared son alimentados por las avalanchas. Generalmente presentan una "rimaye" abierta hacia arriba y terminan en barras de "seracs" inestables sobre rocas pulidas. Las lenguas son raras. Los volcanes (Ámpano y Coropuna culminan a más de 6000 m. en el Sur del Perú) están revestidos de un espeso casquete de hielo. Aquí los derrames proglaicares son limitados. En este terreno donde el aire es muy seco la sublimación de la nieve tiende a prevalecer sobre la fusión. En la alta montaña subtropical seca del Norte de Chile, algunos glaciares rocosos son formas de decrepitud de las últimas crecidas glaciales.

La exposición interviene en la zona tropical y subtropical. Las pendientes orientales se benefician de una insolación matinal cuando el cielo está despejado, de ahí el paso
rápido del hielo al deshielo, mientras que las vertientes expuestas al Oeste y al SW en el hemisferio Sur sólo reciben el sol en la tarde en el momento en que las montañas están generalmente cubiertas de nubes. También en la Cordillera de Huayhuash las paredes orientales rocosas son sometidas a la gelificración hasta 6000 m. mientras que los glaciares relle- nan umbilícos y tapizan paredes hasta 4500 m. sobre el flanco Oeste. Sin embargo, cuando la alimentación en nieve viene del Este esta disminuye unida a la exposición desaparece e incluso se invierte (Cordilleras de la región de Cusco).

En la montaña templada húmeda (región de los lagos chilenos y Patagonia) los glaciares se terminan en lengüas que pueden a veces extenderse en lóbulos sobre pie- demontes barridos por aguas proglaciales., Se trata de aparatos glaciales bastante cercanos de los de la cordillera pacífica de Alaska; sin embargo, mientras que en Alaska y Colombia británica las cadenas pacíficas tienen las cimas más altas del continente, en el Sur de los Andes el volumen montañoso es reducido. Hay que agregar aquí el papel del viento que aleja la nieve hacia el Este.

Figura 2 Los grandes medios de los Andes tropicales durante el último máximo "glacial"

1) Selva densa, cortada con sabanas. Temperaturas medias superiores a 20-22º, precipitaciones bastante bien repartidas en el año, pero totales eventualmente más dé- biles que actualmente.

2-3 ) Selva con matorrales de altura: Temperatura media comprendida entre 10 y 20º; des- lizamientos, arrancamientos en las pendientes. Altura comprendida entre 1000 y 3000 metros.

4) Piso de la estepa arbustiva. Importancia de los deslizamientos y de las lavas tor- renciales, ligada a precipitaciones violentas. Fondo de los valles tapado por el ma- terial caído de los vertientes; numerosas obturaciones locales y temporales. Altura comprendida entre 1500 y 2800-3000 m. en los Andes secos pacíficos, entre 1500 y 3000 m. en las cuencas intramontañas.

5-6) Grandes vertientes desnudas o débilmente recubiertas por una estepa arbustiva. Fe- nómenos de chorreo y de arranque muy desarrollados durante los rarios pero po- tentes chaparrones. Acciones torrenciales.

7) Desierto marcado por un chorreo episódico en los vertientes, el barrido de los fondos de los valles y de los "glacis" por masas de aguas venidas de arriba, a menudo con acumulación de napas aluviales y torrenciales. Colocación de dunas a partir de las playas despejadas por la regresión marina.

8) Dominio donde se ejercen las acciones periglaciares. Piso delgado, de unos centenares de metros de mando en los Andes húmedos, debajo del dominio de la alta mon- taña; piso comprendido entre 2800 y 3800-4000 m. en los Andes secos; acumulación de derrumbes; desarrollo de las formas de deslizamientos; gran movilidad de la superfi- cie de las vertientes.

9) Dominio de la alta montaña nevada. Glaciares en paredes fuertes enolazándose a gla- ciares de círcos y cunas; hacia abajo, paredes de derrumbe criónival. Las precipita- ciones están bastante bien repartidas en el año y caen en nieve. A partir de 4000-4200 m. en los Andes secos donde se observan glaciares rocosos y la preponderancia de las acciones criónivales; a partir de 3200-3400 m. en los Andes orientales perú- bolivianos, por encima de 3200 m. en los Andes colombianos.
Los procesos periglaciares son activos sobre márgenes altitudinales de una amplitud muy desigual según las condiciones climáticas. El piso "periglacial" es particularmente reducido en los terrenos muy húmedos y de variaciones térmicas escasas, ya se trate de la zona ecuatorial o del terreno océánico fresco de Chile meridional.

Sobre los "páramos" húmedos del Ecuador y de Colombia, la gelifracción es poco activa, no hay helada profunda. Las rocas están cubiertas de musgos y líquenes y las tuberías tapizan los huecos. Sólo se observan formas menores: suelos estriados que se borran de una estación a otra; pequeños cascos al pie de las rocas no cubiertas, campos de pipkrakes. Sobre el flanco oriental húmedo de la cordillera tropical, la selva de altura sube mucho y en pocos centenares de metros se pasa de la espesura de bambús al terreno glacial. En lo zona temperada fresca y húmeda de Chile meridional los glaciares descienden más bajo que el isotermo de 0º. Las acciones nivales de estación (avalanchas sobre las pendientes fuertes, solifluxion nival), prevalecen sobre las acciones ligadas a las heladas.

La gelifracción puede ser activa en los Andes tropicales secos. Las amplitudes térmicas al nivel del suelo alcanzan en pocas horas varias decenas de grados, especialmente en temporada seca (-20º sobre rocas hacia 5000 m. durante la noche y + 30º al sol). Pero las heladas no son eficaces sino cuando el suelo o las rocas en superficie están empañadas en agua. La permeabilidad y la fisuración fina de la roca son factores esenciales. Las heladas son particularmente activas después de los aguaceros de granizo blando que cubren los relieves y después de las tormentas de estación seca a las que sucede un tiempo seco con fuerte helada nocturna y buen soleado diurno. La gelifracción afecta las superficies rocosas, especialmente los calcáreos margosos y las andesitas que se rompen en pedazos acumulándose al pie de las paredes en taludes crinivales. Sobre las pendientes suaves revestidas de un suelo con elementos finos y guijarros se observan suelos estriados. Encima de la estepa de la puna, las pelitas se deshacen en campos de barro que afecta una solifluxión pelicular. Los calcáreos son sometidos a la vez a la disolución post-nival que cava lapíes y a la gelifracción que destruye los micro-relieves encima de los surcos.

El piso donde la gelifracción es actualmente activa tiene una amplitud de 1000 m. en los Andes tropicales secos (entre 4000 y 5000 m.). Es cierto que se hacen sentir heladas a alturas más bajas pero no tienen acción morfológica. Durante el Cuaternario, se ha visto, el límite de la gelifracción se hundió de unos 1000 m. en los Andes tropicales; taludes de derrubios consolidados ulteriormente en brechas tapizan vertientes hasta 3.000 m. en los Andes centrales del Perú y Weischet describe coladas periglaciales cuaternarias, contemporáneas de las glaciaciones andinas, rellenando los valles de la cordillera de la costa en Chile central.
Figura 3. Profundidad indicando para cada sector de conejo a superficie existente por cada


Superficie que se ha calculado a partir del mapa al 1/1 000 000.

Se tiene de 5 W., en los números de los círculos indicando los límites de suelo. Las

unidades de los grados medidos definidos en la leyenda de la figura 1.
3—Los sistemas en el dominio cálido y húmedo

Las pendientes son regidas por deslizamientos, movimientos de masa y por las distintas formas del chorreo. Meteorizaciones ferrálicas se desarrollan en superficies planas o moderadamente inclinadas; ponen de relieve la desigualdad a la alteración de las rocas. En los zócalos cristalinos del piso cálido y húmedo de Colombia, se encuentran esos relieves característicos en forma de medias naranjas separadas por valles de fondo plano. Estas formas se observan igualmente en el piso temperado fresco (Oriente antioqueño). Se plantea una pregunta. ¿En qué medida esas meteorizaciones, probablemente originadas bajo un clima cálido y húmedo, continúan desarrollándose cuando a causa de una modificación provocada eventualmente por el levantamiento, el clima se vuelve más frío? ¿Las meteorizaciones ferrálicas pueden producirse en un clima fresco pero constantemente húmedo? En la cordillera central colombiana morrenas recientes, a 3200 m. están profundamente meteorizadas. A 2600 m. Khodzi nota que guijarros de arenisca de un depósito reciente están alterados, des cementados y desferruginizados en medio hidromorfo bajo un clima fresco. Quedan por hacer estudios sobre las condiciones de la alteración en altura en un medio tropical húmedo.

4—Los sistemas morfogenéticos en el dominio seco

En el piso inferior de los Andes centrales a proximidad del Pacífico las vertientes están generalmente regularizadas por una pendiente cuyo valor está comprendido entre 27 y 35°. Están más o menos cubiertas por sus propios restos o aspersiones eólicas. Evolucionan bajo el efecto del chorreo areolar, excepcional actualmente pero más frecuente durante los "pluviosos", como de "glacis" de pendiente fuerte retrocediendo paralelamente a ellos mismos. La elaboración de estas pendientes rocosas rectilíneas no ha sido posible sino después de la trituración intensa sufrida en este sector de la flexura pacífica. Las rocas básicas oscuras, con pequeños cristales homogéneos, son resistentes y no se rompen más que en gruesos blo-
Foto 1. Cumbres del Norte de la Cordillera Blanca (Perú). A la derecha, pirámide del Alpamayo. Alturas entre 5000 y 6400 m. Glaciares de paredes con corniza somital y "iceflood". "Rimaye" y glaciar de pie de paredes.

Foto 2. Superficie de la "puna" (Andes centrales del Perú, meseta kárstica de Junín al Este de La Oroya, altura 4200 m.). Las series mesozoicas, plegadas, se encuentran troncadas por la superficie de la "puna".
Foto 3. “Altiplano”. Norte de la pampa de Junín (hacia 4110 m. Andes centrales del Perú). Alta llanura, depósitos morrenicos y fluviglaciales cuaternarios troncados por un “glacis” de barrido. Por atrás, mesetas de la “puna”.

Foto 4. “Cuenca de Huancayo” (Andes centrales del Perú). El fondo de la cuenca, rellenable de terrazas cuaternarias y de conos de epandaje, se ubica entre 3100 y 3200 m. Por atrás, mesetas de la “puna” y, por debajo de las nubes, cumbres del Huaytapallana.
Foto 5. Lava torrencial ("aluvión") que ha destruido el 10 de Enero de 1962 el pueblo de Ranrahircá. Ha sido provocada por el desprendimiento de una parte del glaciar de la cumbre del Huascán (Cordillera Blanca, Perú), desarrollando la formación de una lava de varios millones de metros cúbicos. El 31 de Mayo de 1970, una lava análoga, desarrollada también por el desprendimiento de una parte del glaciar del Huascán, destruyó la ciudad vecina de Yungay.

Foto 6. Depósitos de pendientes cuaternarios por encima de Tarma (Andes centrales peruanos hacia 3500 m.). Series gruesas, estratificadas y consolidadas en brecha fechada del último período frío (glaciación "Mantaro"); en la esquina de derecha, se encuentra fosilitada por un suelo rojo, chorreado y fechado del interglacial. Este suelo es cubierto con depósitos más finos, fechados del último período frío.
Foto 7. Largas vertientes encostradas; su perfil es heredado del último período frío cuaternario (altura 3300-3400 m.); por atrás, las gargantas del Mantaro en su salida de la cuenca de Huancayo, Andes centrales peruanos.

Foto 8. Vertiente oriental de los Andes centrales. Entre 1500 y 2500 m. Deslizamientos en esquistos meteorizados en las vertientes desmontadas; aguas arriba, selva de altura.
ques delimitados por una cuadrícula de macrodiacasas. Estos bloques bajan las pendientes durante los chaparrones o en ocasión de las sacudidas sísmicas. Las rocas más cuarzosas, claras, de grandes cristales se desagregan en arenas o en hojas de descamación más fácilmente movilizables sobre la vertiente, resultando una erosión más rápida de los granitos que de las dioritas. Estas pendientes de Richter retrocedieron sobre todo durante las fases de chaparrones. Los restos son tomados al pie de las vertientes por los uedos que barren los fondos planos de los valles del desierto. Estos uedos se esparcen y vienen a morir en los grandes glaciales del piedemonte que son así retocados en superficie, a menos que desemboquen en un río perenne, alimentado por las lluvias o las nieves fundidas de la sierra; contribuyen entonces a acrecentar la carga sólida del río.

Sobre los "glacís", cuya superficie está frecuentemente encostrada por sal, yeso o carbonatos, vientos que soplan del sector Sur y Sur-Oeste desplazan barchanes (Sur del Perú) o también extienden la arena en nápas modeladas en ergs (Sur de Pisco y Oeste de Ica). El viento modela curiosas dunas en las cumbres que coronan interfluvios o también riega de arena fina las pendientes. Los cascos de la roca se mezclan a la arena rociosa produciendo una capa coluvio-eólica de ciertas vertientes del desierto.

Las pendientes expuestas al estacionamiento actual de las neblinas litorales están revestidas de una ligera capa de meteorización pedológica. La solifluxión pelícu lar puede ser activa sobre la cobertura coluvio-eólica cuando el material y la pendiente se prestan para ello. En proximidad al océano los rocíos favorecen sobre los afloramientos rocosos fisurados los efectos de sal motivados por fuertes insolaciones que permiten la cristalización.

Sólo se trata aquí de acciones menores. Los procesos están actualmente muy disminuidos en el desierto pacífico pero los raros chaparrones permiten bastante bien imaginarse la potencia de la erosión sobre estas vertientes frágiles y la capacidad de transporte de los uedos que nacen bajo el chaparrón.

Varios temas serán objeto de investigaciones coordinados entre las distintas especialidades de las ciencias de la tierra. El análisis sistemático apoyado sobre una cartografía precisa de la neotectónica permitirá quizás conocer las etapas del mecanismo de la construcción pero igualmente del desmantelamiento de los Andes, especialmente sobre su fachada occidental. Habrá que reunir estos trabajos de terreno con las grandes hipótesis geofísicas como la de las placas. El estudio fino de las formaciones continentales y volcánicas plio-villafranquianas, en particular de las que están atrapadas en las cuencas intramontañosas, facilitará el establecimiento de una cronología en un momento decisivo de la historia de los Andes. Finalmente la búsqueda de la mobili dad de la superficie de las vertientes, permitirá dentro de la perspectiva de una geografía física global establecer los balances de los distintos medios.
BIBLIOGRAPHIE


DRESCH (J.) 1957. Les types morphoclimatiques et leurs limites dans les Andes centrales. BAGF, nov. - déc.


PASKOFF (R.) 1976. Le Chili semi-aride. These, Bordeaux, Biere Ed.


